Product Code Database
Example Keywords: ornament -sail $48-146
barcode-scavenger
   » » Wiki: Radio Resource Management
Tag Wiki 'Radio Resource Management'.
Tag
Radio resource management ( RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example , wireless local area networks, systems, and radio broadcasting networks.
(2025). 9781107143210, Cambridge University Press.
(2025). 079237374X, Springer. . 079237374X
RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible.

RRM concerns multi-user and multi-cell network capacity issues, rather than the point-to-point . Traditional telecommunications research and education often dwell on and with a single user in mind, but when several users and adjacent base stations share the same frequency channel it may not be possible to achieve the maximum channel capacity. Efficient dynamic RRM schemes may increase the system spectral efficiency by an order of magnitude, which often is considerably more than what is possible by introducing advanced channel coding and source coding schemes. RRM is especially important in systems limited by co-channel interference rather than by noise, for example cellular systems and broadcast networks homogeneously covering large areas, and consisting of many adjacent access points that may the same channel frequencies.

The cost for deploying a wireless network is normally dominated by base station sites (real estate costs, planning, maintenance, distribution network, energy, etc.) and sometimes also by frequency license fees. So, the objective of radio resource management is typically to maximize the system spectral efficiency in bit/s/Hz/area unit or Erlang/MHz/site, under some kind of user fairness constraint, for example, that the grade of service should be above a certain level. The latter involves covering a certain area and avoiding due to co-channel interference, , attenuation caused by path losses, caused by shadowing and multipath, and other forms of . The grade of service is also affected by blocking due to admission control, scheduling starvation or inability to guarantee quality of service that is requested by the users.

While classical radio resource managements primarily considered the allocation of time and frequency resources (with fixed spatial reuse patterns), recent techniques enables adaptive resource management also in the spatial domain. In cellular networks, this means that the fractional frequency reuse in the standard has been replaced by a universal frequency reuse in LTE standard.


Static radio resource management
Static RRM involves manual as well as computer-aided fixed or radio network planning. Examples:
  • Frequency allocation decided by standardization bodies, by national frequency authorities and in frequency resource auctions.
  • Deployment of base station sites (or broadcasting transmitter site)
  • Antenna heights
  • Channel frequency plans
  • Sector antenna directions
  • Selection of and parameters
  • Base station antenna , for example

Static RRM schemes are used in many traditional wireless systems, for example 1G and 2G cellular systems, in today's wireless local area networks and in non-cellular systems, for example broadcasting systems. Examples of static RRM schemes are:

  • Circuit mode communication using and TDMA.
  • Fixed channel allocation (FCA)
  • Static criteria


Dynamic radio resource management
Dynamic RRM schemes adaptively adjust the radio network parameters to the traffic load, user positions, user mobility, quality of service requirements, base station density, etc. Dynamic RRM schemes are considered in the design of wireless systems, in view to minimize expensive manual cell planning and achieve "tighter" patterns, resulting in improved system spectral efficiency.

Some schemes are centralized, where several base stations and access points are controlled by a Radio Network Controller (RNC). Others are distributed, either autonomous algorithms in , or wireless access points, or coordinated by exchanging information among these stations.

Examples of dynamic RRM schemes are:

  • algorithms
  • algorithms
  • algorithms
  • Dynamic Channel Allocation (DCA) or Dynamic Frequency Selection (DFS) algorithms, allowing "cell breathing"
  • Traffic adaptive criteria, allowing "cell breathing"
  • Re-use partitioning
    • Single Antenna Interference Cancellation (SAIC)
  • Dynamic , for example
    • Dynamic single-frequency networks (DSFN)
    • Phased array antenna with
      • Multiple-input multiple-output communications (MIMO)
      • Space-time coding
  • Admission control
  • Dynamic bandwidth allocation using resource reservation schemes or statistical multiplexing, for example and/or
  • Channel-dependent scheduling, for instance
    • Max-min fair scheduling using for example
    • Proportionally fair scheduling using for example weighted fair queuing
    • Maximum throughput scheduling (gives low grade of service due to starvation)
    • Dynamic packet assignment (DPA)
    • Packet and Resource Plan Scheduling (PARPS) schemes
  • Mobile ad hoc networks using communication
  • Green communication


Inter-cell radio resource management
Future networks like the LTE standard (defined by 3GPP) are designed for a frequency reuse of one. In such networks, neighboring cells use the same frequency spectrum. Such standards exploit Space Division Multiple Access (SDMA) and can thus be highly efficient in terms of spectrum, but required close coordination between cells to avoid excessive inter-cell interference. Like in most cellular system deployments, the overall system spectral efficiency is not range limited or noise limited, but interference limited. Inter-cell radio resource management coordinates resource allocation between different cell sites by using techniques. There are various means of inter-cell interference coordination (ICIC) already defined in the standard. Dynamic single-frequency networks, coordinated scheduling, multi-site MIMO or joint multi-cell precoding are other examples for inter-cell radio resource management.


See also
  • CDMA spectral efficiency
  • Electromagnetic interference control
  • IEEE 802.11h - Transmit power control and dynamic frequency selection (DFS) for wireless local area networks
  • IEEE 802.11k - RRM for wireless local area networks
  • Mobility management
  • Multiple access methods
  • Radio frequency propagation model

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs